US009098299B2

a2 United States Patent 10) Patent No.: US 9,098,299 B2
Adams et al. 45) Date of Patent: Aug. 4, 2015
(54) RUN TIME INCREMENTAL COMPILATION 2007/0234288 Al* 10/2007 Lindseyetal. ... 717117
OF SCRIPT CODE 2007/0277153 Al* 11/2007 Ambrose et al. 717/120
2008/0178149 Al* 7/2008 Petersonetal. 717/110
R : R 2010/0005457 Al* 12010 Komatsu et al. 717/145
(75) Inventors: §el(;h Ad;'ills’ ls,an Cla{r.loss : CFA (US); 2010/0211638 AL* 82010 ROUgIET .oovrrvorrrrrnren 709/205
hidrew Jofin arosil, San Francisco, 2011/0126185 AL* 52011 Waris etal. . . 717/169
CA (US): Jason Owen Evans, Palo Alto, 2011/0167404 A1* 7/2011 Liuetal .o 717/106
CA (US) 2012/0192153 AL* 72012 Venkatraman etal. 717/124
) 2012/0227034 Al* 9/2012 Ibarraetal. ..o 717/145
(73) Assignee: Facebook, Inc., Menlo Park, CA (US) 2013/0055214 A1* 2/2013 Harrison et al. 717/127
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 133 days. Swamy et al, Gradual Typing Embedded Securely in JavaScript,
2014.*
(21) Appl. No.: 13/546,893 (Continued)
(22) Filed: Jul. 11, 2012
(65) Prior Publication Data Primary Examiner — Wei Zhen
US 2013/0074052 A1l Mar. 21, 2013 Assistant Examiner — Zhan Chen
(74) Attorney, Agent, or Firm — Fenwick & West LLP
Related U.S. Application Data
(60) Provisional application No. 61/632,819, filed on Sep.
16,2011. 57 ABSTRACT
(51) Int.Cl Scripts are incrementally compiled at runtime to generate
GOG6F 9/45 (2006.01) executable code. The incremental compilation generates
GO6F 9/30 (2006.01) executable code corresponding to a basic block of the script.
(52) US.CL The executable code for a basic block of script is generated for
CPC ... GOGF 8/437 (2013.01); GOGF 9/30192 a set of types of variables of the basic block resulting from
(2013.01) execution of the script in response to a request. The generated
(58) Field of Classification Search executable code is stored and executed for subsequent
CPC oo GOGF 7/78; GOGF 8/00-8/78; GOGF requests if these requests result in the same types of variables
9/44-9/455; GO6F 11/36 for the basic block. The incremental compilation of the script
USPC ooceeeeeeeseeeeeseeesseeeeanes 717/100-178 isperformedinalazy fashion, such that executable code is not
See application file for complete search history. generated for combinations of types of variables of the script
code that are not obtained from requests received at runtime.
(56) References Cited The script may dynamically generate portions of a web page

U.S. PATENT DOCUMENTS

that is returned in response to a request for execution of the
script.

7,120,572 B1* 10/2006 Liangcccccoevvevieenns 703/26
2002/0046400 Al* 4/2002 Burch 717/154
2007/0226700 Al* 9/2007 Galetal. ...ccccovenee 717/128 26 Claims, 9 Drawing Sheets
Online System 100
Script Compiler 110 240
Execution
Engine
220
210 B
yte Code
PARSER —
Generator C
120
Script Code AS%iSer e
230 Store
Byte Code ~—
Compiler
S
N A
280 270
Byte Code Executable
Store Code Store
N—

US 9,098,299 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Adams, K., et al., “A Comparison of Software and Hardware Tech-
niques for x86 Virtualization,” in Proceedings of the 12 Interna-
tional Conference on Architectural Support for Programming Lan-

guages and Operating Systems, San Jose, California, USA, Oct.
21-25, 2006, 12 pages.

Bhatia, N., “Virtual Machine Monitor Execution Modes in VMware
vSphere™ 4.0,” VMware, Inc., 2012, pp. 1-10, can be retrieved at
<http://www.vmware.com/files/pdf/perf-vsphere-monitor__modes.
pdf>.

* cited by examiner

U.S. Patent

Aug. 4, 2015 Sheet 1 of 9

US 9,098,299 B2

Client Device Client Device
160a 160b
170a 170b

Browser Browser
Online System 100
130 110
Web Server Script Compiler
/\
N
120
Script Code
Store
N~

FIG. 1

US 9,098,299 B2

Sheet 2 of 9

Aug. 4, 2015

U.S. Patent

¢ Old

\\J \.\J
810)S 8poH al01S
a|geInoaxg 9p0o7 alAg

(4 09¢

L~

N~~~

\J \J

al01S
9on|.5< apo)n 1duog
0S¢ A
\j \.\J
N~~~
auibug
uoIINdaxg
ove

Jo|Idwo)
9po9 ahg
(1[%4
BloI1=IETIET)
9poN alAg w_m_%/xn_
0¢¢

[T Jojdwo 1duos

00T Wwa1sAg auljuO

U.S. Patent

Aug. 4, 2015 Sheet 3 of 9

310
Identify script code snippet for
compilation

'

320
Parse script code snippet to generate
abstract syntax tree

A\

330
Generate byte code from abstract
syntax tree

340
Store byte code.

FIG. 3

US 9,098,299 B2

U.S. Patent

Executable Basic

Block 410b

Aug. 4, 2015 Sheet 4 of 9 US 9,098,299 B2

Executable Basic

Block 410a

Guard Code 430a

Basic Block Body 440a

Exit Pointer Exit Pointer

450a 455a

430b

Byte Code

440b

Compiler 420

450b

455b

FIG. 4

US 9,098,299 B2

Sheet 5 of 9

Aug. 4, 2015

U.S. Patent

(8)G Ol

0Z¥ Jo|dwon

8poN 81Ag Jo
Bp09 9|geINdaxy

pPOES

POcS
%00|g Jdised
3|qeINdeXg

A

q0€s

a0cs
%00/g olseq
8|geInoaxy

- — —

T~ N

BOYG | BOES

e0¢S
390|g Jised
8|qenosxg

- -

0SS 9POY 9|qeIN9axy

-

—]

POLS
|||||||| 9p0)D
1duog

o0lLg
9p0)d
1duog

}3s1ad

a0lg
F——- °p0D
1duog

} (801G uonipuo?) 4|

BOLS

|||||||| 9pood
1duog

00 2p07 1dlIag ajdwex]

US 9,098,299 B2

Sheet 6 of 9

Aug. 4, 2015

U.S. Patent

20€G

20¢s
300|g dlseq
5|geIN9aXxg

pPOcS

POCS

8|qeIN08xg

yoo|g Jlseq |- ———

q0¢€s

a0cs
300|g dised
8|qeInoexg

.+~

/

B0YS | BOES

B0CS

yoo|g diseq |« -
9|qeIN99Xg

q0GG 89P0 9|qENdISxy

(q)S OId4

POLS
8p0oDd
1duog

20186
39poD
1duog

13asa{

q01¢G

-~ @poD

1duog

} (201G uonipuo)) 4|

B0LS
apon
1duog

00¢ opo9 1duog o|dwex3

US 9,098,299 B2

Sheet 7 of 9

Aug. 4, 2015

U.S. Patent

0cv
Ja|Idwon apo a1kg

()9 'O/
aqov9 [eTo[x¢] B079 B0E9
Jajuiod Ix3 | Jsjuiod Ix3 Jajuiod Ix3 | Jsjuiod Ix3
00¢9 Apog ¥oo|g diseg B0¢9 Apog ¥o0|g diseg

4019 ®p0oD pieny

— E0L9 9poD pJeno

q

09 e009

US 9,098,299 B2

Sheet 8 of 9

Aug. 4, 2015

U.S. Patent

PO¥9
Jawiod

x4

POE9
Jawiod

e

099
Jojaidioyu|

P0¢9 Apog
¥o0|g oiseq

POL9
apoD pJens

D

PO09

()9 ©/4

20¥9 | J0%9 Jo¥9 | J0€9 B0¥9 | B0go
Jajuiod | Jequiod Jajulod | Jsyuiod Jajuiod | Je1uiod
ux3 ux3 ux3 X3 e ux3

3029 Apog G029 Apog B0¢9 Apog

¥o0|g oiseg ¥o0|g dIseq %o0|g diseg

3019 a019 B019

apoH pJens apoI pJens apo) pJeno

3009 009 B009

U.S. Patent Aug. 4, 2015 Sheet 9 of 9 US 9,098,299 B2

, 700
Receive request

710

Identify basic block to
execute

!

720
YES Is executable NO
basic block
available?

730
Determine variable types

740
Compile source code of
basic block to generate
executable basic block

750
S — Execute code of <«
executable basic block

!

760
YES Is processing NO
of request
complete?

FIG. 7

US 9,098,299 B2

1
RUN TIME INCREMENTAL COMPILATION
OF SCRIPT CODE

CROSS REFERENCES TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/632,819 filed Sep. 16, 2011, which
is incorporated by reference in its entirety.

FIELD OF THE INVENTION

This invention relates to compilation of script code in gen-
eral and more specifically to incremental compilation of
script code at runtime.

BACKGROUND

Scripting languages offer simplicity and ease of develop-
mentto software developers. Script code is easy to write since
scripting languages are often based on a small set of expres-
sions and statements that are simple to learn. Software devel-
opers often use scripting languages for rapid development of
applications, for example, web applications. Scripting lan-
guages may be used for server side programs or for client side
programs. Examples of server side scripting languages
include PHP (Personal Home Page) and examples of client
side scripting languages include JAVASCRIPT.

Server side script code can be used for executing a user
request received at a web server by dynamically generating
web pages. Server side scripting is often used for implemen-
tation of interactive websites that interface with data stores
for retrieving and storing information. The PHP scripting
language allows embedding of script code with hypertext
markup language (HTML). Client side script code is often
used for performing simple computations on the client side
rather than sending a request to the server for simple compu-
tations.

Conventional approaches to execute script code include
executing the script code using an interpreter. However, an
interpreter may not be able to perform several optimizations
that a compiler that generates executable code can perform.
Therefore, interpreting script code can be inefficient com-
pared to running executable code obtained by compiling the
script code. Furthermore, scripting languages often allow
simplified syntax that makes it easier for a user to write script
code. For example, scripting languages often support untyped
variables that do not require a user to provide type informa-
tion of the variable. As a result, a compiler processing script
code may not have the required information for performing
certain optimizations. For example, compiler optimizations
often require knowledge of types of the variables that is not
available in script code based on untyped variable. As a result,
conventional techniques for compiling script code may not be
able to generate efficient executable code.

SUMMARY

Embodiments of the invention incrementally compile
script code at runtime to generate executable code. The incre-
mental compilation generates executable code corresponding
to basic blocks of the script code. Executable code for each
basic block is generated for a set of types of variables of the
basic block determined by executing the script code.

A script compiler receives a request to execute particular
script code. The script compiler identifies a basic block of the
script code for compilation and determines types of variables

10

15

30

40

45

55

2

of the basic block based on the execution of the script code.
The script compiler generates an executable basic block cor-
responding to the identified basic block. The script compiler
stores the executable basic block for use in subsequent execu-
tions of the basic block.

The script compiler may check if an executable basic block
corresponding to the basic block was previously generated for
the set of types determined. The script compiler generates
executable basic block for the basic block if there was no
executable basic block previously generated. If a subsequent
request is received that results in different variable types for a
basic block from the script, the script compiler generates
executable basic block for the basic block based on the new
variable types.

The features and advantages described in this summary and
the following detailed description are not all-inclusive. Many
additional features and advantages will be apparent to one of
ordinary skill in the art in view of the drawings, specification,
and claims hereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a diagram illustrating a system environment com-
prising client devices interacting with an online system that
generates dynamic web pages using script code, in accor-
dance with one embodiment of the invention.

FIG. 2 is a diagram illustrating the architecture of an online
system that generates dynamic web pages by incrementally
compiling script code at runtime, in accordance with one
embodiment of the invention.

FIG. 3 is a flow diagram illustrating the process of compil-
ing script code, in accordance with one embodiment of the
invention.

FIG. 4 is a diagram illustrating the structure of executable
code generated by a script compiler, in accordance with one
embodiment of the invention.

FIGS. 5(a-b) are diagrams illustrating incremental compi-
lation of byte code obtained from an example script code, in
accordance with one embodiment of the invention.

FIGS. 6(a-b) illustrate the structure of the executable code
for a basic block, in accordance with one embodiment of the
invention.

FIG. 7 is a diagram illustrating the process for incremen-
tally compiling script code at runtime, in accordance with one
embodiment of the invention.

The figures depict various embodiments of the present
invention for purposes of illustration only. One skilled in the
art will readily recognize from the following discussion that
alternative embodiments of the structures and methods illus-
trated herein may be employed without departing from the
principles of the invention described herein.

DETAILED DESCRIPTION

FIG. 1 shows a system environment for allowing a client
device to interact with an online system that generates
dynamic web pages by compiling script code, in accordance
with one embodiment of the invention. FIG. 1 illustrates
client devices 160 interacting with an online system 100 using
the network 150. The client devices 160 send requests to the
online system 100 via the network 150. The online system
100 may dynamically generate web pages in response to the
request and send the generated web pages to the client device
160 in response to the request.

FIG. 1 and the other figures use like reference numerals to
identify like elements. A letter after a reference numeral, such
as “160a,” indicates that the text refers specifically to the

US 9,098,299 B2

3

element having that particular reference numeral. A reference
numeral in the text without a following letter, such as “160,”
refers to any or all of the elements in the figures bearing that
reference numeral (e.g. “160” in the text refers to reference
numerals “160a” and/or “1604” in the figures).

Embodiments of the computing environment can have
multiple client devices 160 and multiple online systems 100
connected to the network 150. Certain functionality
described in one embodiment as being performed on the
server side can also be performed on the client side in other
embodiments if appropriate. For example, although FIG. 1
shows the script compiler 110 running on the online system
100 for compiling server side script code, in other embodi-
ments, the script compiler 110 may run on the client device
160 for compiling client side script code. In addition, the
functionality attributed to a particular component can be per-
formed by different or multiple components operating
together.

The client devices 160 comprise one or more computing
devices that can receive user input and can transmit and
receive data via the network 150. In one embodiment, the
client device 165 is a conventional computer system execut-
ing, for example, a Microsoft Windows-compatible operating
system (OS), Apple OS X, and/or a Linux distribution. In
another embodiment, the client device 160 can be a device
having computer functionality, such as a personal digital
assistant (PDA), mobile telephone, video game system, etc.

The client device 160 is configured to communicate via
network 150. The client device 160 can execute an applica-
tion, for example, a browser application 170 that allows a user
of'the client device 160 to interact with the online system 100.
A user may provide input using a user interface presented to
the user via the browser application 170. The interactions of
the user via the browser application 170 may cause the
browser application 170 to send a request for information that
identifies a markup language document comprising server
side scripting code. The markup language document is pro-
cessed to obtain a transformed markup language document
that is returned in response to the request.

The network 150 uses standard communications technolo-
gies and/or protocols. Thus, the network 150 can include links
using technologies such as Ethernet, 802.11, worldwide
interoperability for microwave access (WiMAX), 3G, digital
subscriber line (DSL), etc. Similarly, the networking proto-
cols used on the network 150 can include multiprotocol label
switching (MPLS), the transmission control protocol/Internet
protocol (TCP/IP), the User Datagram Protocol (UDP), the
hypertext transport protocol (HTTP), the simple mail transfer
protocol (SMTP), the file transfer protocol (FTP), etc. The
data exchanged over the network 170 can be represented
using technologies and/or formats including the hypertext
markup language (HTML), the extensible markup language
(XML), etc. In addition, all or some of links can be encrypted
using conventional encryption technologies such as secure
sockets layer (SSL), transport layer security (TLS), Internet
Protocol security (IPsec), etc.

The online system 100 comprises a web server 130, a script
compiler 110 and a script code store 120. The web server 130
is a module processing requests received by the online system
100 from client devices 160 or other external systems that
interact with the online system 100. The web server 110 may
be implemented by conventional web server software, such as
APACHE or INTERNET INFORMATION SERVICES. In
response to a request from a client device 160, the web server
130 may invoke other modules of the online system 100 to
process the request. For example, the web server 130 may
invoke modules of the online system 100 to obtain a web page

10

15

20

25

30

35

40

45

50

55

60

65

4

in response to the request from the client device 160. The web
server 130 sends the web page to the client device 160 for
presentation on the browser 170.

The script code store 120 stores script code that imple-
ments portions of functionality provided by the online system
100 to client devices 160. A script code may comprise a
function, procedure, method, or a block of code that may be
embedded within an hypertext markup language (HTML)
document. The script code implements functionality, for
example, retrieving information stored in various databases
of the online system 100, performing computations, or inter-
acting with other systems.

The script compiler 110 takes script code in source code
form and generates equivalent executable code for execution
by a processor of the online system 100 (in this disclosure, the
term “script code” is also referred to as “script.) In an embodi-
ment, the script compiler 110 performs incremental compi-
lation of the script code in a lazy fashion. For example, a
portion of script code is compiled if a request causes this
portion of script code to execute. Once a portion of the script
code is compiled, the generated executable code is available
for future requests. However, if no request received by the
online system 100 needs to execute a particular portion of the
script code, that particular portion may not be compiled.
Therefore, no executable code corresponding to a particular
portion of script may exist in the online system 100 if no
request from a client device needs to execute that portion of
script. For example, a script may comprise an “if-then-else”
statement that executes an “if”” portion of script if a condition
evaluates to true and an “else” portion of script if the condi-
tion evaluates to false. If all incoming requests evaluate the
condition to a true value, these request only execute the “if”
part of the script. Accordingly, executable code correspond-
ing to the “else” part of the “if-then-else” statement may never
be generated, unless an incoming request results in the con-
dition being evaluated to a false value.

FIG. 2 shows a diagram illustrating the architecture of an
online system 100 that generates dynamic web pages by
incrementally compiling script code at runtime, in accor-
dance with one embodiment of the invention. The online
system comprises the script code store 120, an abstract syntax
tree (AST) store 250, a byte code store 260, an executable
code store 270, an execution engine 240, and the script com-
piler 110. The script compiler 110 further comprises a parser
210, a byte code generator 220, and a byte code compiler 230.
Some embodiments of the online system 100 have different
and/or other modules than the ones described herein, and the
functions can be distributed among the modules in a different
manner than is described here. For example, several modules
shown in the online system 100 may be present in a client
device 160 if the script code being processed is client side
script code.

The script code store 120 stores script code, for example,
script code specified as PHP, server side JAVASCRIPT, or
another syntax. The script code may be input by a software
developer using an editor or copied from another computer. In
an embodiment, the script code is specified in a human read-
able text form. The parser 210 reads the script code from one
or more files in the script code store 120 and builds a data
structure called an abstract syntax tree (AST) that is stored in
the AST store 250. The AST is a hierarchical tree represen-
tation of script code. The parser 125 checks the script code for
syntax errors and reports the errors to allow a user to correct
the errors.

The byte code generator 220 traverses the abstract syntax
tree representation of the script code and generates byte code
corresponding to the script code. The byte code is stored in the

US 9,098,299 B2

5

byte code store 260. The byte code comprises code repre-
sented using an instruction set that is designed for efficient
execution by an interpreter or for efficient compilation into
executable code, for example, machine code. The byte code
instructions may correspond to a virtual stack machine or a
virtual register machine. The byte code compiler 230 converts
byte code into executable code and stores the generated
executable code in the executable code store 270.

The execution engine 240 executes the instructions avail-
able in the executable store 270. For example, the execution
engine 240 may be invoked in response to a request received
from a client device 160. The execution engine 240 identifies
executable code corresponding to the request received for
execution. An online system 100 may compile all available
byte code stored in the byte code store 260, for example, as a
batch process and store the generated executable code in the
executable code store 270. Compiling all available byte code
store in advance ensures that executable code is readily avail-
able for any request that is received by the online system, so
long as the corresponding script code is available in the script
code store 120. However, script code typically supports fea-
tures that make it difficult to generate efficient executable
code. For example, script code may support untyped variable
for which the type is not available until runtime. Programmers
often use untyped variables since they do not require the
programmer to make early decisions regarding types of vari-
ables used. A programmer may specify a variable as untyped
even if at runtime the variable only stores values of one
particular type, for example, an integer value. In practice
significant amount of script code is executed based on a
limited set of types corresponding to the untyped variables.
However, if the online system 100 compiles the byte code to
executable code prior to receiving the requests at runtime, the
type information may not be available for the variables. A
byte code compiler 230 that compiles the byte code without
making any specific assumptions about the types of the vari-
ables may generate inefficient executable code since the gen-
erated executable code accounts for all possible types that
each untyped variable may take, whether or not the incoming
requests use these types.

Embodiments of the byte code compiler 230 compile byte
code to executable code based on information available at
runtime. For example, the byte code compiler 230 may utilize
type information of variables obtained during an execution of
the script code to generate executable code optimized for
these specific types. Accordingly, executable code required
for executing a request may or may not be available in the
executable code store 270 at runtime. If executable code
corresponding to the request is not available in the executable
code store 270, the execution engine 240 identifies byte code
corresponding to the request from the byte code store 230.
The execution engine 240 invokes the byte code compiler 230
to compile the byte code corresponding to the request to
generate executable code. The execution engine 240 provides
type information of variables obtained during the current
execution of the script code to the byte code compiler 230.
Accordingly, the byte code compiler 230 generates efficient
executable code based on the type information of variables
available. The execution engine 240 executes the generated
executable code. In some embodiments, executable code may
be generated directly from script code without requiring byte
code generation.

If future executions of the script code provide variables of
the same type as the first request, the executable code can be
reused for the future requests. However, if a subsequent
execution provides a different combination of types of vari-
ables compared to the first execution, the execution engine

30

40

45

55

6

240 invokes the byte code compiler 230 to generate execut-
able code corresponding to the new combination of types
corresponding to the variables. Accordingly, the executable
code store 270 may store different executable codes for the
same byte code program, each executable code correspond-
ing to a different combination of variable types. The byte code
compiler 230 may never generate executable code corre-
sponding to type combinations that are never received in
executions of the script code.

In an embodiment, the byte code compiler 230 compiles a
basic block of byte code at a time. A basic block of code has
one entry point, i.e., no instruction within the basic block
other than the entry point can be reached from anywhere in
the script code as a destination of a jump instruction. The
entry point is typically the first instruction of the basic block.
A basic block may have one or more exit point, i.e., typically
the last instruction of the basic block causes the program
control to start executing another basic block. The last
instruction may evaluate certain condition and determine the
next basic block for execution based on the result of the
evaluation of the condition. For example, the last instruction
may evaluate a binary condition and transfer program control
to one basic block if the condition evaluates to true otherwise
transfer program control to another basic block (if condition
evaluates to false). Similarly, the last instruction of the basic
block may transfer control to different basic blocks based on
the value of a particular variable. For example, if the variable
value is 1, program control is transferred to basic block B1, if
the variable value is 2, program control is transferred to basic
block B2, if the variable value is 3, program control is trans-
ferred to basic block B3, and so on. The simple structure of a
basic block makes it easy for the byte code compiler 230 to
optimize and compile a basic block.

FIG. 3 is a flow diagram illustrating the process of compil-
ing script code, in accordance with one embodiment of the
invention. The process illustrated in FIG. 3 may be executed
by the script compiler 110 as a batch process that compiles
script code stored in the script code store 120. For example,
software developers may periodically provide new scripts
implementing certain features of the online system 100. The
received script code may be compiled as a batch process by
the online system 100. Alternatively, software developers
may update existing script code, thereby requiring recompi-
lation of the updated script code. The script compiler 110 may
repeat the steps shown in FIG. 3 for all the script code that
need to be recompiled.

The script compiler 110 identifies 310 a script for compi-
lation. The script compiler 110 invokes the parser 210 for
parsing the script. The parser 210 parses 320 the scriptcode to
generate an abstract syntax tree (AST) representation of the
script code. The parser 210 stores the AST representation in
the AST store 250. In an embodiment, modules of the script
compiler 110 perform various operations using the AST rep-
resentation, for example, static analysis, type inference, and
optimizations. As a result, the script compiler 110 may anno-
tate the AST and/or transform the AST. The script compiler
110 stores the annotated ASTs or the transformed ASTs in the
AST store 250. Each step performed by the script compiler
110 typically use the latest version of the AST from the AST
store 250 and generates a subsequent version of the AST. The
byte code compiler 230 generates 330 byte code from the
AST representation of the script code and stores 340 the
generated byte code in the byte code store 260.

The byte code compiler 230 incrementally compiles the
byte code stored in the byte code store at runtime to generate
corresponding executable code. The byte code compiler 230
performs the incremental compilation responsive to execu-

US 9,098,299 B2

7

tions of the script code, for example, executions caused by
requests received from client devices 160.

The execution engine 240 requests compilation of one
basic block of byte code at a time. More specifically, the
execution engine 240 requests compilation of one basic block
for a particular combination of types of the variables as
required for execution of an incoming request. FIG. 4 is a
diagram illustrating the structure of executable code gener-
ated by ascript compiler, in accordance with one embodiment
of the invention. The generated executable basic block 410
comprises a portion of guard code 430, a basic block body
440, and one or more exit pointers 450. The executable basic
block 410 is generated in response to receiving a request from
the client device 160. Accordingly, the executable basic block
410 is optimized for the types of variables as provided by the
incoming request.

The following example illustrates how executable code is
generated for a given basic block. Assume that a basic block
comprises two untyped variables varA and varB. Further
assume that for a particular execution it is determined that
both variables varA and varB are integers. Accordingly, the
byte code compiler 230 compiles the basic block to generate
the basic block body 440 assuming the variables varA and
varB are integers. The guard code 430 comprises instructions
that check a particular condition before executing the basic
block body 440. In the above example, the generated guard
code 430 verifies that the types of variables varA and varB are
integers. If the types of both variables are integers, the guard
code 430 continues execution of the basic block body 440.

The last instruction of an executable basic block 410a that
is executed typically causes the program control to begin
execution of another executable basic block 4105. Accord-
ingly, the last instruction of the executable basic block 410
may comprise an exit pointer 450 that specifies the address of
an executable basic block 4105 for execution after the execu-
tion of the executable basic block 410. The last instruction of
an executable basic block 4104 that is executed may transfer
control to different executable basic blocks 410 depending on
certain criteria. For example, the last instruction in a basic
block may correspond to an “if”” condition that executes one
basic block if the condition is evaluated to true and another
basic block if the condition is evaluated to false. Therefore,
the last instruction of the executable basic block 410 may
comprise one or more exit pointers 450a, 4554, and so on.

As shown in FIG. 4, the exit pointer 450q points to another
executable basic block 41054. If a particular executable block
that needs to be executed subsequent to the execution of the
executable basic block 410a has not been compiled so as to
generate a corresponding executable basic block, the corre-
sponding exit pointer 455a transters control to the byte code
compiler 420. The byte code compiler 420 may be provided
with information describing the subsequent basic block that
needs to be compiled. The address of the subsequent basic
block may be communicated to the byte code compiler 420
using function-calling conventions of the native machine in
which the system is hosted. In this embodiment, the byte code
compiler 420 obtains the address of the byte code correspond-
ing to the subsequent basic block to be compiled from the top
of the stack. Once the byte code compiler 420 generates an
executable basic block 410 corresponding to the subsequent
basic block, the pointer 4554 is changed to point to the gen-
erated executable basic block instead of the byte code com-
piler 420.

FIG. 5(a-b) are diagrams illustrating incremental compila-
tion of byte code obtained from an example script code, in
accordance with one embodiment of the invention. FIG. 5(a)
shows an example script code 500 executed in response to a

10

15

20

25

30

35

40

45

50

55

60

65

8

request coming from client device 160. The example script
code 500 comprises a portion of byte code 510a followed by
an if-then-else statement, followed by another portion of byte
code 510d. The if-then-else statement comprises a condition
510e, a portion of byte code 5105 that is executed if condition
510e¢ evaluates to true, and a portion of byte code 510c¢ that is
executed if the condition 510e evaluates to false.

Assume that a request is received from a client 160 that
comprises values of variables that result in the condition 410e
evaluating to true. The resulting executable code generated by
the byte code compiler 230 comprises the executable code
550a shown in FIG. 5(a). The portion of script code 510a
combined with the condition 510e corresponds to executable
code 520a. The executable code 520 includes a guard code
430 in the beginning to verify whether the types of the vari-
ables correspond to a specific combination. The end of the
executable code 520a comprises instructions evaluating the
condition 510e. If the condition 410e evaluates to true, the
program control is transferred according to exit pointer 530a
otherwise the program control is transferred according to exit
pointer 540a.

Since the current request received from the client 160
results in the condition 410e evaluating to true, the executable
basic block 5205 corresponding to portion of script code 5105
is also generated. The script code 500 shows that after execu-
tion of script code 51054, the script code 5104 is executed.
Accordingly, the executable basic block 5204 corresponding
to the script code 5104 is also generated. For the execution of
the current request, the script code 510c¢ is never executed
since it corresponds to the “else” portion of the if-the-else
statement that is not executed when the condition 510e evalu-
ates to true. Accordingly, the end of executable basic block
520a comprises an exit pointer 540qa pointing to the byte code
compiler 230 with information identifying byte code corre-
sponding to script code 510c.

If several subsequent requests all comprise variables with
types matching those corresponding to the previous request
and result in condition 510e evaluating to true, the executable
code 550a can be executed to process these requests. A new
set of executable code 550 may be generated if a request is
received that requires execution of script code 500 with a new
combination of types of variables, different from those cor-
responding to executable code 550. However, if all requests
received from the client device 160 continue providing the
same combination of variable types and always result in the
condition 510e evaluating to true, the executable code 550
continues to process the requests and no new executable code
needs to be generated.

Ifat any stage, an execution of the script code is performed
that provides the previous combination of variable types that
cause the condition 510e to evaluate to false, the executable
code 5504 gets modified to executable code 5504 as shown in
FIG. 5(5). Since the condition 510e evaluates to false, the exit
pointer 540a causes the byte code compiler 420 to be invoked
causing an executable basic block 520c¢ to be generated cor-
responding to the script code 510c¢. The script compiler 110
changes the exit pointer 540a to point to the generated execut-
able basic block 520c¢ instead of the byte code compiler 420.
Since the execution of the script code 510¢ is followed by the
execution of the script code 5104, the exit pointer 530¢ at the
end of the executable basic block 520c¢ is configured to point
to the executable block 5204 corresponding to script code
510d. The executable code 5505 can process requests that
result in the condition 510e evaluating to true as well as false
without having to invoke the byte code compiler 420. Fur-
thermore, the executable basic block 520¢ is not generated
unless an execution that causes the condition 510e to evaluate

US 9,098,299 B2

9

to false is received. Accordingly, the script compiler 110
generates executable code in a lazy fashion, the generation
performed only if a request requires certain portion of script
code to be executed. As a result, the script compiler 110 does
not generate dead code, i.e., code that is never executed.

FIGS. 6(a-b) illustrate the structure of the executable code
for a basic block, in accordance with one embodiment of the
invention. As shown in FIG. 6, each basic block may result in
generation of one or more basic block executable code frag-
ments 600, each executable code fragments 600 correspond-
ing to a particular combination of types of variables in the
basic block. Each executable code fragment 600 for a basic
block includes a guard code 610, the basic block body 620,
and exit pointers 630, 640. If all executions of the script code
encountered so far by the script compiler 110 provide the
same combination of variable types for the basic block, a
single executable code fragment 600a is generated for the
basic block. If a particular execution results in a new combi-
nation of variable types, another executable code fragment
60054 is generated as shown in FI1G. 6(5). The guard code 610a
checks if the variable types provided in the current execution
match the variable types corresponding to the executable
code fragment 600q. If the variable types provided in the
current execution match the variable types of the executable
code fragment 6004, the basic block body 6204 is executed.
Similarly, guard code 6105 checks if the variable types pro-
vided in the current execution match the variable types cor-
responding to executable code fragment 60054. If the variable
types provided in the current execution match the variable
types corresponding to the executable code fragment 6005,
the basic block body 6205 is executed. If the current execu-
tion provides a combination of variable types that is different
from these two types, the byte code compiler 420 is invoked
to generate a new basic block executable code fragment 600
for the new combination of types.

As shown in FIG. 6, multiple executable code fragments
600 may be generated for the same basic block. In an embodi-
ment, no more than a threshold number of executable code
fragments 600 are generated for any basic block, for example
the value of threshold can be 4 or 5. After the threshold
number of executable code fragments 600 are generated for a
basic block, if a new variable type combination is encoun-
tered during execution of the script, the basic block code is
executed by the interpreter 660 as shown in FIG. 6(5).

Inan embodiment, the order in which the guard code 610 of
the various executable code fragments 600 for a basic block is
executed is determined based on a likelihood of encountering
the combination of variable types corresponding to the
executable code fragment 600. The likelihood of encounter-
ing a combination of types may be determined based on
historical patterns of occurrence of each combination of type.
In an embodiment, the executable code store 270 maintains
statistics describing the number of times each combination of
variable types corresponding to each executable code frag-
ment 600 of a basic block is encountered. The combination of
variable types that has been encountered the most in the past
executions of the basic block is assumed to be the combina-
tion most likely to be encountered in subsequent executions
of the script code. Accordingly, the guard code 610 of the
executable code fragment 600 corresponding to this particu-
lar variable type combinations is executed first as shown in
FIG. 6. Similarly, the guard code 610 of the executable code
fragment 600 corresponding to the variable type combination
that is second most likely to occur is executed next, and so on.
If, the likelihood of the encountering the various variable type
combinations for the basic block changes over time, the basic
blocks as shown in FIG. 6 are rearranged such that the guard

10

15

20

25

30

35

40

45

50

55

60

65

10

codes 610 are executed according to the updated order of
likelihood of encountering the variable type combinations.
For example, as shown in FIG. 6(b), the combination of
variable types corresponding to executable code fragment
610a is most likely to be encountered, followed by the com-
bination of variable types corresponding to executable code
fragment 6105, followed by the combination of variable types
corresponding to executable code fragment 610c and 6104. If
over time, the combination of variable types corresponding to
executable code fragment 6105 becomes more likely to occur
than the combination of variable types corresponding to
executable code fragment 610a, the order in which the guard
codes are executed is changed from 610a, 6105, 610c¢, and
610d to 6105, 610a, 610c, and 6104d.

FIG. 7 is a diagram illustrating the process for incremen-
tally compiling script code at runtime, in accordance with one
embodiment of the invention. The web server 130 receives a
request from the client device 160 that requires execution of
script code from the script code store 120 in order to dynami-
cally generate a web page. The web server 130 invokes the
execution engine 240 to process the received request. Accord-
ingly, the execution engine 240 receives 700 the request from
the web server 130 to process it.

Based on the types of variables of the script code that needs
to be executed, the execution engine 240 identifies 710 abasic
block that needs to be executed in order to begin processing of
the request received 700. The execution engine 240 deter-
mines 720 whether executable basic block corresponding to
the basic block identified 710 is available. If execution engine
240 determines 720 that the executable basic block corre-
sponding to the basic block identified 710 exists, the execut-
able basic block is executed 750.

If the executable basic block corresponding to the basic
block identified 710 is determined 720 not to exist, the execu-
tion engine 240 analyzes the identified basic block to deter-
mine 730 the types of the variables of the basic block. The
execution engine 240 invokes the byte code compiler 230 to
compile 740 the script code to generate an appropriate execut-
able basic block. Since the compilation 740 of basic block
assumes a specific set of types for the variables, the script
compiler can perform optimizations if possible. The script
compiler 110 does not have to generate executable code
assuming untyped variables with no type information.
Instead, the script compiler 110 can treat the untyped vari-
ables as if they had the types as determined 730 for the
variables. The execution engine 240 further executes 750 the
generated executable basic block. The execution engine 240
determines 760 whether this is the last basic block to be
executed in response to the request received 700. If the current
basic block that is executed is determined 760 to be the last
basic block corresponding to the request received 700, the
execution engine 240 may process another request received
700 from the web server 130 using the above steps. If the
execution engine 240 determines 760 that there are more
basic blocks to be processed for this request, the execution
engine 240 identifies 710 the next basic block to be processed,
for example, by using an exit pointer at the end of the previous
basic block that was executed. The execution engine 240
continues executing the basic blocks corresponding to this
request until the execution of all basic blocks for this request
is complete.

Alternative Applications

The foregoing description of the embodiments of the
invention has been presented for the purpose of illustration; it
is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Persons skilled in the relevant art can

US 9,098,299 B2

11

appreciate that many modifications and variations are pos-
sible in light of the above disclosure.

Some portions of this description describe the embodi-
ments of the invention in terms of algorithms and symbolic
representations of operations on information. These algorith-
mic descriptions and representations are commonly used by
those skilled in the data processing arts to convey the sub-
stance of their work effectively to others skilled in the art.
These operations, while described functionally, computation-
ally, or logically, are understood to be implemented by com-
puter programs or equivalent electrical circuits, microcode, or
the like. Furthermore, it has also proven convenient at times,
to refer to these arrangements of operations as modules, with-
out loss of generality. The described operations and their
associated modules may be embodied in software, firmware,
hardware, or any combinations thereof.

Any of the steps, operations, or processes described herein
may be performed or implemented with one or more hard-
ware or software modules, alone or in combination with other
devices. In one embodiment, a software module is imple-
mented with a computer program product comprising a com-
puter-readable medium containing computer program code,
which can be executed by a computer processor for perform-
ing any or all of the steps, operations, or processes described.

Embodiments of the invention may also relate to an appa-
ratus for performing the operations herein. This apparatus
may be specially constructed for the required purposes, and/
or it may comprise a general-purpose computing device
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a tangible computer readable storage medium or any
type of media suitable for storing electronic instructions, and
coupled to a computer system bus. Furthermore, any comput-
ing systems referred to in the specification may include a
single processor or may be architectures employing multiple
processor designs for increased computing capability.

Finally, the language used in the specification has been
principally selected for readability and instructional pur-
poses, and it may not have been selected to delineate or
circumscribe the inventive subject matter. It is therefore
intended that the scope of the invention be limited not by this
detailed description, but rather by any claims that issue on an
application based hereon. Accordingly, the disclosure of the
embodiments of the invention is intended to be illustrative,
but not limiting, of the scope of the invention, which is set
forth in the following claims.

What is claimed is:

1. A computer implemented method comprising:

storing a script comprising basic blocks, wherein a basic
block is a set of instructions with a single entry point, the
script using one or more untyped variables;

for each of a set of basic blocks of the script, storing a
plurality of executable basic blocks for the basic block,
each executable basic block comprising code optimized
for a set of types of untyped variables used in the basic
block;

receiving a request for executing the script;

identifying a basic block from the script for execution;

receiving an input set of values for variables of the basic
block;

determining an input set of types of untyped variables of
the basic block based on the input set of values;

determining whether the input set of types of untyped
variables match a set of types of a stored executable
basic block for the basic block; and

20

25

30

40

45

50

55

60

65

12

executing an executable basic block for the basic block if
the input set of types of untyped variables match the set
of types of the executable basic block.

2. The computer implemented method of claim 1, further
comprising:

checking if at least one executable basic block correspond-

ing to the basic block is available; and

wherein the executable basic block corresponding to the

basic block is generated responsive to determining that
no executable basic block corresponding to the basic
block is available.

3. The computer implemented method of claim 1, wherein
the request received is a first request, the method further
comprising:

receiving a second request for subsequent execution of the

script; and

responsive to determining that executable code corre-

sponding to the basic block was previously generated for
the set of types, executing instructions of the executable
basic block for the subsequent execution of the script.

4. The computer implemented method of claim 1, wherein
the executable basic block transfers control to a subsequent
executable basic block for execution for processing the script.

5. The computer implemented method of claim 1, wherein
the executable basic block transfers control to a byte code
compiler responsive to determining that executable code for a
subsequent basic block was not previously generated.

6. The computer implemented method of claim 1, wherein
the executable basic block evaluates a condition, the execut-
able basic block configured to:

transfer control to a first executable basic block for execu-

tion responsive to the condition evaluating to true; and
transfer control to a second executable basic block for
execution responsive to the condition evaluating to false.

7. The computer implemented method of claim 1, wherein
the script is configured to generate portions of a dynamically
generated web page.

8. The computer implemented method of claim 7, further
comprising:

sending the dynamically generated web page to the sender

of the request.

9. The computer implemented method of claim 1, wherein
the request is a first request, the input set of values is a first
input set of values, the set of types is a first set of types, and the
executable basic block is a first executable basic block, the
method further comprising:

receiving a second request for execution of the script;

receiving a second input set of values for variables of the

basic block;

determining that the second input set of values does not

conform to the first set of types;

responsive to determining that the second input set of val-

ues does not conform to the first set of types, generating
a second executable basic block for the basic block; and
storing the second executable basic block.

10. The computer implemented method of claim 1, further
comprising:

maintaining statistics indicating a historical frequency of

occurrence of each set of types of untyped variables
corresponding to each of the plurality of executable
basic blocks; and

ordering the executable basic blocks based on the historical

frequency of occurrence of the set of types correspond-
ing to each executable basic block.

11. The computer implemented method of claim 1, further
comprising:

US 9,098,299 B2

13

determining an estimate of a likelihood of occurrence each
set of types of untyped variables associated with execut-
able basic blocks of the plurality; and

ordering the executable basic blocks of the plurality in

decreasing order of likelihood of occurrence of set of
types for each executable basic block.
12. The computer implemented method of claim 11, fur-
ther comprising:
monitoring the estimates of likelihood of occurrence the
sets of types of untyped variables associated with
executable basic blocks of the plurality; and

reordering the executable basic blocks of the plurality if the
estimates of likelihood of occurrence of the sets of types
change.

13. A non-transitory computer-readable storage medium
storing computer-executable cope for incremental compila-
tion of script code at runtime, the code comprising instruc-
tions for:

storing a script comprising basic blocks, wherein a basic

block is a set of instructions with a single entry point, the
script using one or more untyped variables;

for each of a set of basic blocks of the script, storing a

plurality of executable basic blocks for the basic block,
each executable basic block comprising code optimized
for a set of types of untyped variables used in the basic
block;

receiving a request for executing the script;

identifying a basic block from the script;

receiving an input set of values for variables of the basic

block;
determining an input set of types of untyped variables of
the basic block based on the input set of values;

determining whether the input set of types of untyped
variables match a set of types of a stored executable
basic block for the basic block; and

executing an executable basic block for the basic block if

the input set of types of untyped variables match the set
of types of the executable basic block.

14. The non-transitory computer-readable storage medium
of claim 13, wherein the script compiler is further configured
to:

check if at least one executable basic block corresponding

to the basic block is available; and

wherein the executable basic block corresponding to the

basic block is generated responsive to determining that
no executable basic block corresponding to the basic
block is available.

15. The non-transitory computer-readable storage medium
of'claim 13, wherein the request received is a first request, the
code further comprising instructions for:

receiving a second request for subsequent execution of the

script; and

responsive to determining that executable code corre-

sponding to the basic block was previously generated for
the set of types, executing instructions of the executable
basic block for the subsequent execution of the script.

16. The non-transitory computer-readable storage medium
of claim 13, wherein the executable basic block transfers
control to a byte code compiler responsive to determining that
executable code for a subsequent basic block was not previ-
ously generated.

17. The non-transitory computer-readable storage medium
of claim 13, wherein the executed basic block evaluates a
condition and the executed basic block is configured to:

transfer control to a first executable basic block for execu-

tion responsive to the condition evaluating to true; and

15

20

35

40

45

65

14

transfer control to a second executable basic block for

execution responsive to the condition evaluating to false.

18. The non-transitory computer-readable storage medium
of'claim 13, wherein the request is a first request, the input set
of'values is a first input set of values, the set of types is a first
set of types, and the executable basic block is a first execut-
able basic block, the code further comprising instructions for:

receive a second request for execution of the script;

receive a second input set of values for variables of the
basic block;

determining that the second input set of values does not

conform to the first set of types;

responsive to determining that the second input set of val-

ues does not conform to the first set of types, generate a
second executable basic block for the basic block; and
store the second executable basic block.

19. A computer implemented method comprising:

receiving requests for executing a script, the script com-

prising a basic block, wherein a basic block is a set of
instructions with a single entry point, the script using
one or more untyped variables;

determining a plurality of combinations of types corre-

sponding to untyped variables of the basic block, each
combination of types encountered during executions of
the script;

for each combination of types, generating, at runtime, an

executable basic block corresponding to the basic block,

the executable basic block comprising a guard set of

instructions and a body set of instructions; and

executing the script in response to a new request, the execu-

tion comprising:

identifying the basic block for execution;

determining a current combination of types for a set of
values corresponding to untyped variables ofthe basic
block based on the current execution of the script; and

executing the body set of instructions of a matching
executable basic block if the guard set of instructions
of'the matching executable basic block determine that
the current combination of types matches the combi-
nation of types of untyped variables corresponding to
the executable basic block.

20. The computer implemented method of claim 19,
wherein the execution of the script further comprises:

responsive to failing to find a match between the current

combination of types of untyped variables and each of
the plurality of combinations of types, generating a new
executable basic block for the basic block corresponding
to the current combination of types of untyped variables.

21. The computer implemented method of claim 20,
wherein the new executable basic block for the basic block is
generated responsive to the total number of executable basic
blocks for the basic block being below a threshold number.

22. The computer implemented method of claim 20,
wherein the execution of the script further comprises:

responsive to failing to find a match between the current

combination of types of variables and each of the plu-
rality of combinations of types, and responsive to the
number of executable basic blocks meeting a threshold
number, interpreting the code of the basic block.

23. A non-transitory computer-readable storage medium
storing computer-executable code for incremental compila-
tion of script code at runtime, the code comprising instruc-
tions for:

receiving requests for executing a script, the script com-

prising a basic block, wherein a basic block is a set of
instructions with a single entry point, the script using
one or more untyped variables;

US 9,098,299 B2

15

determining a plurality of combinations of types corre-
sponding to untyped variables of the basic block, each
combination of types encountered during executions of
the script;

for each combination of types, generating, at runtime, an
executable basic block corresponding to the basic block,
the executable basic block comprising a guard set of
instructions and a body set of instructions; and

executing the script in response to a new request, the execu-
tion comprising:
identifying the basic block for execution;

determining a current combination of types for a set of
values corresponding to untyped variables ofthe basic
block based on the current execution of the script; and

executing the body set of instructions of a matching
executable basic block if the guard set of instructions
of'the matching executable basic block determine that
the current combination of types matches the combi-
nation of types of untyped variables corresponding to
the executable basic block.

10

15

20

16

24. The non-transitory computer-readable storage medium
of claim 23, wherein the execution of the script further com-
prises:

responsive to failing to find a match between the current

combination of types of untyped variables and each of
the plurality of combinations of types, generating a new
executable basic block for the basic block corresponding
to the current combination of types of untyped variables.

25. The non-transitory computer-readable storage medium
of claim 24, wherein the new executable basic block for the
basic block is generated responsive to the total number of
executable basic blocks for the basic block being below a
threshold number.

26. The non-transitory computer-readable storage medium
of claim 24, wherein the execution of the script further com-
prises:

responsive to failing to find a match between the current

combination of types of variables and each of the plu-
rality of combinations of types, and responsive to the
number of executable basic blocks meeting a threshold
number, interpreting the code of the basic block.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,098,299 B2 Page 1of1
APPLICATION NO. : 13/546893

DATED : August 4, 2015

INVENTOR(S) : Keith Adams et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In The Claims

Column 13, line 16, delete “cope,” insert -- code --.

Signed and Sealed this
Twentieth Day of September, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

